

LittleMCMC

[image: _images/badge.svg]
 [https://github.com/eigenfoo/littlemcmc][image: _images/badge1.svg]
 [https://github.com/eigenfoo/littlemcmc][image: _images/badge2.svg]
 [https://codecov.io/gh/eigenfoo/littlemcmc][image: _images/7afd4d53965424175cdda09eec63feb782ad1e61.svg]
 [https://littlemcmc.readthedocs.io/en/latest/?badge=latest][image: _images/littlemcmc.svg]
 [https://github.com/eigenfoo/littlemcmc/blob/master/LICENSE.littlemcmc.txt]
littlemcmc

 Installation

Installation

Note

LittleMCMC is developed for Python 3.6 or later.

LittleMCMC is a pure Python library, so it can be easily installed by using
pip or directly from source.

Using pip

LittleMCMC can be installed using pip [https://pip.pypa.io].

pip install littlemcmc

From Source

The source code for LittleMCMC can be downloaded from GitHub [https://github.com/eigenfoo/littlemcmc] by running

git clone https://github.com/eigenfoo/littlemcmc.git
cd littlemcmc/
python setup.py install

Testing

To run the unit tests, install pytest [http://doc.pytest.org/] and then,
in the root of the project directory, execute:

pytest -v

All of the tests should pass. If any of the tests don’t pass and you can’t
figure out why, please open an issue on GitHub [https://github.com/eigenfoo/littlemcmc/issues].

 LittleMCMC Quickstart

Note

This tutorial was generated from an IPython notebook that can be
downloaded here.

LittleMCMC Quickstart

LittleMCMC is a lightweight and performant implementation of HMC and
NUTS in Python, spun out of the PyMC project. In this quickstart
tutorial, we will walk through the main use case of LittleMCMC, and
outline the various modules that may be of interest.

Table of Contents

	Who should use LittleMCMC?

	Sampling

	Inspecting the Output of
lmc.sample

	Customizing the Default NUTS
Sampler

	Other Modules

Who should use LittleMCMC?

LittleMCMC is a fairly barebones library with a very niche use case.
Most users will probably find that
PyMC3 [https://github.com/pymc-devs/pymc3] will satisfy their needs,
with better strength of support and quality of documentation.

There are two expected use cases for LittleMCMC. Firstly, if you:

	Have a model with only continuous parameters,

	Are willing to manually transform all of your model’s parameters to
the unconstrained space (if necessary),

	Have a Python function/callable that:

	computes the log probability of your model and its derivative

	is pickleable [https://docs.python.org/3/library/pickle.html]

	outputs an array with the same shape as its input

	And all you need is an implementation of HMC/NUTS (preferably in
Python) to sample from the posterior,

then you should consider using LittleMCMC.

Secondly, if you want to run algorithmic experiments on HMC/NUTS (in
Python), without having to develop around the heavy machinery that
accompanies other probabilistic programming frameworks (like
PyMC3 [https://github.com/pymc-devs/pymc3/], TensorFlow
Probability [https://github.com/tensorflow/probability/] or
Stan [https://github.com/stan-dev/stan]), then you should consider
running your experiments in LittleMCMC.

How to Sample

import numpy as np
import scipy
import littlemcmc as lmc

def logp_func(x, loc=0, scale=1):
 return np.log(scipy.stats.norm.pdf(x, loc=loc, scale=scale))

def dlogp_func(x, loc=0, scale=1):
 return -(x - loc) / scale

def logp_dlogp_func(x, loc=0, scale=1):
 return logp_func(x, loc=loc, scale=scale), dlogp_func(x, loc=loc, scale=scale)

By default: 4 chains in 4 cores, 500 tuning steps and 1000 sampling steps.
trace, stats = lmc.sample(
 logp_dlogp_func=logp_dlogp_func,
 model_ndim=1,
 progressbar=None, # HTML progress bars don't render well in RST.
)

/home/george/littlemcmc/venv/lib/python3.6/site-packages/ipykernel_launcher.py:2: RuntimeWarning: divide by zero encountered in log

Inspecting the Output of lmc.sample

Shape is (num_chains, num_samples, num_parameters)
trace.shape

(4, 1000, 1)

The first 2 samples across all chains and parameters
trace[:, :2, :]

array([[[0.92958231],
 [0.92958231]],

 [[-1.06231693],
 [-1.11589309]],

 [[-0.73177109],
 [-0.66975061]],

 [[0.8923907],
 [0.97253646]]])

stats.keys()

dict_keys(['depth', 'step_size', 'tune', 'mean_tree_accept', 'step_size_bar', 'tree_size', 'diverging', 'energy_error', 'energy', 'max_energy_error', 'model_logp'])

Again, shape is (num_chains, num_samples, num_parameters)
stats["depth"].shape

(4, 1000, 1)

The first 2 tree depths across all chains and parameters
stats["depth"][:, :2, :]

array([[[2],
 [1]],

 [[1],
 [1]],

 [[2],
 [1]],

 [[2],
 [1]]])

Customizing the Default NUTS Sampler

By default, lmc.sample samples using NUTS with sane defaults. These
defaults can be override by either:

	Passing keyword arguments from lmc.NUTS into lmc.sample, or

	Constructing an lmc.NUTS sampler, and passing that to
lmc.sample. This method also allows you to choose to other
samplers, such as lmc.HamiltonianMC.

For example, suppose you want to increase the target_accept from the
default 0.8 to 0.9. The following two cells are equivalent:

trace, stats = lmc.sample(
 logp_dlogp_func=logp_dlogp_func,
 model_ndim=1,
 target_accept=0.9,
 progressbar=None,
)

step = lmc.NUTS(logp_dlogp_func=logp_dlogp_func, model_ndim=1, target_accept=0.9)
trace, stats = lmc.sample(
 logp_dlogp_func=logp_dlogp_func,
 model_ndim=1,
 step=step,
 progressbar=None,
)

/home/george/littlemcmc/venv/lib/python3.6/site-packages/ipykernel_launcher.py:2: RuntimeWarning: divide by zero encountered in log

For a list of keyword arguments that lmc.NUTS accepts, please refer
to the API reference for
``lmc.NUTS` <https://littlemcmc.readthedocs.io/en/latest/generated/littlemcmc.NUTS.html#littlemcmc.NUTS>`__.

Other Modules

LittleMCMC exposes:

	Two step methods (a.k.a. samplers): `littlemcmc.HamiltonianMC
(Hamiltonian Monte
Carlo) <https://littlemcmc.readthedocs.io/en/latest/generated/littlemcmc.HamiltonianMC.html#littlemcmc.HamiltonianMC>`__
and the `littlemcmc.NUTS (No-U-Turn
Sampler) <https://littlemcmc.readthedocs.io/en/latest/generated/littlemcmc.NUTS.html#littlemcmc.NUTS>`__

	Various quadpotentials (a.k.a. mass matrices or inverse metrics) in
`littlemcmc.quadpotential <https://littlemcmc.readthedocs.io/en/latest/api.html#quadpotentials-a-k-a-mass-matrices>`__,
along with mass matrix adaptation routines

	Dual-averaging step size adaptation in
`littlemcmc.step_sizes <https://littlemcmc.readthedocs.io/en/latest/generated/littlemcmc.step_sizes.DualAverageAdaptation.html#littlemcmc.step_sizes.DualAverageAdaptation>`__

	A leapfrog integrator in
`littlemcmc.integration <https://littlemcmc.readthedocs.io/en/latest/generated/littlemcmc.integration.CpuLeapfrogIntegrator.html#littlemcmc.integration.CpuLeapfrogIntegrator>`__

These modules should allow for easy experimentation with the sampler.
Please refer to the API
Reference [https://littlemcmc.readthedocs.io/en/latest/api.html] for
more information.

 Framework Cookbook

Note

This tutorial was generated from an IPython notebook that can be
downloaded here.

Framework Cookbook

littlemcmc only needs a logp_dlogp_func, which is
framework-agnostic. To illustrate this, this cookbook implements linear
in multiple frameworks, and samples them with littlemcmc. At the end
of this notebook, we load the inference traces and sampler statistics
into ArviZ and do some basic visualizations.

import littlemcmc as lmc

Create and Visualize Data

import numpy as np
import matplotlib.pyplot as plt

np.random.seed(42)

true_params = np.array([0.5, -2.3, -0.23])

N = 50
t = np.linspace(0, 10, 2)
x = np.random.uniform(0, 10, 50)
y = x * true_params[0] + true_params[1]
y_obs = y + np.exp(true_params[-1]) * np.random.randn(N)

plt.plot(x, y_obs, ".k", label="observations")
plt.plot(t, true_params[0]*t + true_params[1], label="ground truth")
plt.xlabel("x")
plt.ylabel("y")
plt.legend()
plt.show()

[image: ../_images/framework_cookbook_3_0.png]

PyTorch

import torch

class LinearModel(torch.nn.Module):
 def __init__(self):
 super(LinearModel, self).__init__()
 self.m = torch.nn.Parameter(torch.tensor(0.0, dtype=torch.float64))
 self.b = torch.nn.Parameter(torch.tensor(0.0, dtype=torch.float64))
 self.logs = torch.nn.Parameter(torch.tensor(0.0, dtype=torch.float64))

 def forward(self, x, y):
 mean = self.m * x + self.b
 loglike = -0.5 * torch.sum((y - mean) ** 2 * torch.exp(-2 * self.logs) + 2 * self.logs)
 return loglike

torch_model = torch.jit.script(LinearModel())
torch_params = [torch_model.m, torch_model.b, torch_model.logs]
args = [torch.tensor(x, dtype=torch.double), torch.tensor(y_obs, dtype=torch.double)]

def torch_logp_dlogp_func(x):
 for i, p in enumerate(torch_params):
 p.data = torch.tensor(x[i])
 if p.grad is not None:
 p.grad.detach_()
 p.grad.zero_()

 result = torch_model(*args)
 result.backward()

 return result.detach().numpy(), np.array([p.grad.numpy() for p in torch_params])

298 µs ± 43.8 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

Please see
`sample_pytorch_logp_dlogp_func.py <https://github.com/eigenfoo/littlemcmc/tree/master/docs/_static/scripts/sample_pytorch_logp_dlogp_func.py>`__
for a working example. Theoretically, however, all that’s needed is to
run the following snippet:

trace, stats = lmc.sample(
 logp_dlogp_func=torch_logp_dlogp_func, model_ndim=3, tune=500, draws=1000, chains=4,
)

JAX

from jax.config import config
config.update("jax_enable_x64", True)

import jax
import jax.numpy as jnp

def jax_model(params):
 mean = params[0] * x + params[1]
 loglike = -0.5 * jnp.sum((y_obs - mean) ** 2 * jnp.exp(-2 * params[2]) + 2 * params[2])
 return loglike

@jax.jit
def jax_model_and_grad(x):
 return jax_model(x), jax.grad(jax_model)(x)

def jax_logp_dlogp_func(x):
 v, g = jax_model_and_grad(x)
 return np.asarray(v), np.asarray(g)

/Users/george/miniconda3/lib/python3.7/site-packages/jax/lib/xla_bridge.py:125: UserWarning: No GPU/TPU found, falling back to CPU.
 warnings.warn('No GPU/TPU found, falling back to CPU.')

269 µs ± 48.6 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)

Please see
`sample_jax_logp_dlogp_func.py <https://github.com/eigenfoo/littlemcmc/tree/master/docs/_static/scripts/sample_jax_logp_dlogp_func.py>`__
for a working example. Theoretically, however, all that’s needed is to
run the following snippet:

trace, stats = lmc.sample(
 logp_dlogp_func=jax_logp_dlogp_func, model_ndim=3, tune=500, draws=1000, chains=4,
)

PyMC3

import pymc3 as pm
import theano

with pm.Model() as pm_model:
 pm_params = pm.Flat("pm_params", shape=3)
 mean = pm_params[0] * x + pm_params[1]
 pm.Normal("obs", mu=mean, sigma=pm.math.exp(pm_params[2]), observed=y_obs)

pm_model_and_grad = pm_model.fastfn([pm_model.logpt] + theano.grad(pm_model.logpt, pm_model.vars))

def pm_logp_dlogp_func(x):
 return pm_model_and_grad(pm_model.bijection.rmap(x))

46.3 µs ± 3.94 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)

trace, stats = lmc.sample(
 logp_dlogp_func=pm_logp_dlogp_func,
 model_ndim=3,
 tune=500,
 draws=1000,
 chains=4,
 progressbar=False, # Progress bars don't render well in reStructuredText docs...
)

Visualize Traces with ArviZ

Just to sanity check our results, let’s visualize all the traces using
ArviZ. At the time of writing there’s no way to easily load the
np.ndarrays arrays that littlemcmc returns into an
az.InferenceDataset. Hopefully one day we’ll have an
az.from_littlemcmc method… but until then, please use this code
snippet!

def arviz_from_littlemcmc(trace, stats):
 return az.InferenceData(
 posterior=az.dict_to_dataset({"x": trace}),
 sample_stats=az.dict_to_dataset({k: v.squeeze() for k, v in stats.items()})
)

import arviz as az

dataset = arviz_from_littlemcmc(trace, stats)

az.plot_trace(dataset)
plt.show()

[image: ../_images/framework_cookbook_18_0.png]

 API Reference

API Reference

Sampling

	sample(logp_dlogp_func, Tuple[numpy.ndarray, …)

	Draw samples from the posterior using the given step methods.

Step Methods

	HamiltonianMC(logp_dlogp_func, …[, potential])

	A sampler for continuous variables based on Hamiltonian mechanics.

	NUTS(logp_dlogp_func, Tuple[numpy.ndarray, …)

	A sampler for continuous variables based on Hamiltonian mechanics.

Quadpotentials (a.k.a. Mass Matrices)

	quad_potential(C, is_cov)

	Compute a QuadPotential object from a scaling matrix.

	QuadPotentialDiag(v[, dtype])

	Quad potential using a diagonal covariance matrix.

	QuadPotentialFull(cov[, dtype])

	Basic QuadPotential object for Hamiltonian calculations.

	QuadPotentialFullInv(A[, dtype])

	QuadPotential object for Hamiltonian calculations using inverse of covariance matrix.

	QuadPotentialDiagAdapt(n, initial_mean[, …])

	Adapt a diagonal mass matrix from the sample variances.

	QuadPotentialFullAdapt(n, initial_mean[, …])

	Adapt a dense mass matrix using the sample covariances.

Dual Averaging Step Size Adaptation

	step_sizes.DualAverageAdaptation(…)

	Dual averaging step size adaptation.

Integrators

	integration.CpuLeapfrogIntegrator(potential, …)

	Leapfrog integrator using the CPU.

 littlemcmc.sample

littlemcmc.sample

	
littlemcmc.sample(logp_dlogp_func: Callable[[numpy.ndarray], Tuple[numpy.ndarray, numpy.ndarray]], model_ndim: int, draws: int = 1000, tune: int = 1000, step: Union[littlemcmc.nuts.NUTS, littlemcmc.hmc.HamiltonianMC] = None, init: str = 'auto', chains: Optional[int] = None, cores: Optional[int] = None, start: Optional[numpy.ndarray] = None, progressbar: Union[bool, str] = True, random_seed: Union[int, List[int], None] = None, discard_tuned_samples: bool = True, chain_idx: int = 0, callback=None, mp_ctx=None, pickle_backend: str = 'pickle', **kwargs)

	Draw samples from the posterior using the given step methods.

	Parameters

	
	logp_dlogp_func: Python callable

	Python callable that returns a tuple of the model joint log probability and its
derivative, in that order.

	model_ndim: int

	The number of parameters of the model.

	draws: int

	The number of samples to draw. Defaults to 1000. The number of tuned samples are
discarded by default. See discard_tuned_samples.

	tune: int

	Number of iterations to tune, defaults to 1000. Samplers adjust the step sizes,
scalings or similar during tuning. Tuning samples will be drawn in addition to
the number specified in the draws argument, and will be discarded unless
discard_tuned_samples is set to False.

	step: function

	A step function. By default the NUTS step method will be used.

	init: str

	
	Initialization method to use for auto-assigned NUTS samplers.

	
	auto: Choose a default initialization method automatically. Currently,
this is jitter+adapt_diag, but this can change in the future. If you
depend on the exact behaviour, choose an initialization method explicitly.

	adapt_diag: Start with a identity mass matrix and then adapt a diagonal
based on the variance of the tuning samples.

	jitter+adapt_diag: Same as adapt_diag, but add uniform jitter in
[-1, 1] to the starting point in each chain.

	adapt_full: Same as ‘adapt_diag’, but adapt a dense mass matrix using
the sample covariances.

	chains: int

	The number of chains to sample. Running independent chains is important for some
convergence statistics and can also reveal multiple modes in the posterior. If
None, then set to either cores or 2, whichever is larger.

	cores: int

	The number of chains to run in parallel. If None, set to the number of CPUs
in the system, but at most 4.

	start: dict, or array of dict

	Starting point in parameter space. Initialization methods for NUTS (see init
keyword) can overwrite the default.

	progressbar: bool, optional default=True

	Whether or not to display a progress bar in the command line. The bar shows the
percentage of completion, the sampling speed in samples per second (SPS), and
the estimated remaining time until completion (“expected time of arrival”; ETA).

	random_seed: int or list of ints

	A list is accepted if cores is greater than one.

	discard_tuned_samples: bool

	Whether to discard posterior samples of the tune interval.

	Returns

	
	trace: np.array

	An array that contains the samples.

	stats: dict

	A dictionary that contains sampler statistics.

Notes

Optional keyword arguments can be passed to sample to be delivered to the
``step_method``s used during sampling. In particular, the NUTS step method accepts a
number of arguments. You can find a full list of arguments in the docstring of the
step methods. Common options are:

	target_accept: float in [0, 1]. The step size is tuned such that we
approximate this acceptance rate. Higher values like 0.9 or 0.95 often work
better for problematic posteriors.

	max_treedepth: The maximum depth of the trajectory tree.

	step_scale: float, default 0.25. The initial guess for the step size scaled

down by \(1/n**(1/4)\).

 littlemcmc.HamiltonianMC

littlemcmc.HamiltonianMC

	
class littlemcmc.HamiltonianMC(logp_dlogp_func: Callable[[numpy.ndarray], Tuple[numpy.ndarray, numpy.ndarray]], model_ndim: int, scaling: Optional[numpy.ndarray] = None, is_cov: bool = False, potential=None, target_accept: float = 0.8, Emax: float = 1000, adapt_step_size: bool = True, step_scale: float = 0.25, gamma: float = 0.05, k: float = 0.75, t0: int = 10, step_rand: Optional[Callable[[float], float]] = None, path_length: float = 2.0, max_steps: int = 1024)

	A sampler for continuous variables based on Hamiltonian mechanics.

See NUTS sampler for automatically tuned stopping time and step size
scaling.

	
__init__(logp_dlogp_func: Callable[[numpy.ndarray], Tuple[numpy.ndarray, numpy.ndarray]], model_ndim: int, scaling: Optional[numpy.ndarray] = None, is_cov: bool = False, potential=None, target_accept: float = 0.8, Emax: float = 1000, adapt_step_size: bool = True, step_scale: float = 0.25, gamma: float = 0.05, k: float = 0.75, t0: int = 10, step_rand: Optional[Callable[[float], float]] = None, path_length: float = 2.0, max_steps: int = 1024)

	Set up the Hamiltonian Monte Carlo sampler.

	Parameters

	
	logp_dlogp_funcPython callable

	Python callable that returns the log-probability and derivative of
the log-probability, respectively.

	model_ndimint

	Total number of parameters. Dimensionality of the output of
logp_dlogp_func.

	scaling1 or 2-dimensional array-like

	Scaling for momentum distribution. 1 dimensional arrays are
interpreted as a matrix diagonal.

	is_covbool

	Treat scaling as a covariance matrix/vector if True, else treat
it as a precision matrix/vector

	potentiallittlemcmc.quadpotential.Potential, optional

	An object that represents the Hamiltonian with methods velocity,
energy, and random methods. Only one of scaling or
potential may be non-None.

	target_acceptfloat

	Adapt the step size such that the average acceptance probability
across the trajectories are close to target_accept. Higher values
for target_accept lead to smaller step sizes. Setting this to higher
values like 0.9 or 0.99 can help with sampling from difficult
posteriors. Valid values are between 0 and 1 (exclusive).

	Emaxfloat

	The maximum allowable change in the value of the Hamiltonian. Any
trajectories that result in changes in the value of the Hamiltonian
larger than Emax will be declared divergent.

	adapt_step_sizebool, default=True

	If True, performs dual averaging step size adaptation. If False,
k, t0, gamma and target_accept are ignored.

	step_scalefloat

	Size of steps to take, automatically scaled down by 1 / (size **
0.25).

	gammafloat, default .05

	

	kfloat, default .75

	Parameter for dual averaging for step size adaptation. Values
between 0.5 and 1 (exclusive) are admissible. Higher values
correspond to slower adaptation.

	t0int, default 10

	Parameter for dual averaging. Higher values slow initial adaptation.

	step_randPython callable

	Callback for step size adaptation. Called on the step size at each
iteration immediately before performing dual-averaging step size
adaptation.

	path_lengthfloat, default=2

	total length to travel

	max_stepsint, default=1024

	The maximum number of leapfrog steps.

Methods

	__init__(logp_dlogp_func, …[, potential])

	Set up the Hamiltonian Monte Carlo sampler.

	reset(start)

	Reset quadpotential and begin retuning.

	reset_tuning(start)

	Reset quadpotential and step size adaptation, and begin retuning.

	stop_tuning()

	Stop tuning.

	warnings()

	Generate warnings from HMC sampler.

Attributes

	generates_stats

	

	name

	

	stats_dtypes

	

 littlemcmc.NUTS

littlemcmc.NUTS

	
class littlemcmc.NUTS(logp_dlogp_func: Callable[[numpy.ndarray], Tuple[numpy.ndarray, numpy.ndarray]], model_ndim: int, scaling: Optional[numpy.ndarray] = None, is_cov: bool = False, potential=None, target_accept: float = 0.8, Emax: float = 1000, adapt_step_size: bool = True, step_scale: float = 0.25, gamma: float = 0.05, k: float = 0.75, t0: int = 10, step_rand: Optional[Callable[[float], float]] = None, path_length: float = 2.0, max_treedepth: int = 10, early_max_treedepth: int = 8)

	A sampler for continuous variables based on Hamiltonian mechanics.

NUTS automatically tunes the step size and the number of steps per
sample. A detailed description can be found at [1], “Algorithm 6:
Efficient No-U-Turn Sampler with Dual Averaging”.

NUTS provides a number of statistics that can be accessed with
trace.get_sampler_stats:

	mean_tree_accept: The mean acceptance probability for the tree
that generated this sample. The mean of these values across all
samples but the burn-in should be approximately target_accept
(the default for this is 0.8).

	diverging: Whether the trajectory for this sample diverged. If
there are any divergences after burnin, this indicates that
the results might not be reliable. Reparametrization can
often help, but you can also try to increase target_accept to
something like 0.9 or 0.95.

	energy: The energy at the point in phase-space where the sample
was accepted. This can be used to identify posteriors with
problematically long tails. See below for an example.

	energy_change: The difference in energy between the start and
the end of the trajectory. For a perfect integrator this would
always be zero.

	max_energy_change: The maximum difference in energy along the
whole trajectory.

	depth: The depth of the tree that was used to generate this sample

	tree_size: The number of leafs of the sampling tree, when the
sample was accepted. This is usually a bit less than
2 ** depth. If the tree size is large, the sampler is
using a lot of leapfrog steps to find the next sample. This can for
example happen if there are strong correlations in the posterior,
if the posterior has long tails, if there are regions of high
curvature (“funnels”), or if the variance estimates in the mass
matrix are inaccurate. Reparametrisation of the model or estimating
the posterior variances from past samples might help.

	tune: This is True, if step size adaptation was turned on when
this sample was generated.

	step_size: The step size used for this sample.

	step_size_bar: The current best known step-size. After the tuning
samples, the step size is set to this value. This should converge
during tuning.

	model_logp: The model log-likelihood for this sample.

References

	1

	Hoffman, Matthew D., & Gelman, Andrew. (2011). The No-U-Turn
Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo.

	
__init__(logp_dlogp_func: Callable[[numpy.ndarray], Tuple[numpy.ndarray, numpy.ndarray]], model_ndim: int, scaling: Optional[numpy.ndarray] = None, is_cov: bool = False, potential=None, target_accept: float = 0.8, Emax: float = 1000, adapt_step_size: bool = True, step_scale: float = 0.25, gamma: float = 0.05, k: float = 0.75, t0: int = 10, step_rand: Optional[Callable[[float], float]] = None, path_length: float = 2.0, max_treedepth: int = 10, early_max_treedepth: int = 8)

	Set up the No-U-Turn sampler.

	Parameters

	
	logp_dlogp_funcPython callable

	Python callable that returns the log-probability and derivative of
the log-probability, respectively.

	model_ndimint

	Total number of parameters. Dimensionality of the output of
logp_dlogp_func.

	scaling1 or 2-dimensional array-like

	Scaling for momentum distribution. 1 dimensional arrays are
interpreted as a matrix diagonal.

	is_covbool

	Treat scaling as a covariance matrix/vector if True, else treat
it as a precision matrix/vector

	potentiallittlemcmc.quadpotential.Potential, optional

	An object that represents the Hamiltonian with methods velocity,
energy, and random methods. Only one of scaling or
potential may be non-None.

	target_acceptfloat

	Adapt the step size such that the average acceptance probability
across the trajectories are close to target_accept. Higher values
for target_accept lead to smaller step sizes. Setting this to higher
values like 0.9 or 0.99 can help with sampling from difficult
posteriors. Valid values are between 0 and 1 (exclusive).

	Emaxfloat

	The maximum allowable change in the value of the Hamiltonian. Any
trajectories that result in changes in the value of the Hamiltonian
larger than Emax will be declared divergent.

	adapt_step_sizebool, default=True

	If True, performs dual averaging step size adaptation. If False,
k, t0, gamma and target_accept are ignored.

	step_scalefloat

	Size of steps to take, automatically scaled down by 1 / (size **
0.25).

	gammafloat, default .05

	

	kfloat, default .75

	Parameter for dual averaging for step size adaptation. Values
between 0.5 and 1 (exclusive) are admissible. Higher values
correspond to slower adaptation.

	t0int, default 10

	Parameter for dual averaging. Higher values slow initial adaptation.

	step_randPython callable

	Callback for step size adaptation. Called on the step size at each
iteration immediately before performing dual-averaging step size
adaptation.

	path_lengthfloat, default=2

	total length to travel

	max_treedepthint, default=10

	The maximum tree depth. Trajectories are stoped when this
depth is reached.

	early_max_treedepthint, default=8

	The maximum tree depth during the first 200 tuning samples.

Notes

The step size adaptation stops when self.tune is set to False.
This is usually achieved by setting the tune parameter if
pm.sample to the desired number of tuning steps.

Methods

	__init__(logp_dlogp_func, …[, potential])

	Set up the No-U-Turn sampler.

	reset(start)

	Reset quadpotential and begin retuning.

	reset_tuning(start)

	Reset quadpotential and step size adaptation, and begin retuning.

	stop_tuning()

	Stop tuning.

	warnings()

	Generate warnings from NUTS sampler.

Attributes

	default_blocked

	

	generates_stats

	

	name

	

	stats_dtypes

	

 littlemcmc.quad_potential

littlemcmc.quad_potential

	
littlemcmc.quad_potential(C, is_cov)

	Compute a QuadPotential object from a scaling matrix.

	Parameters

	
	Carraylike, 0 <= ndim <= 2

	scaling matrix for the potential
vector treated as diagonal matrix.

	is_covBoolean

	whether C is provided as a covariance matrix or hessian

	Returns

	
	qQuadpotential

	

 littlemcmc.QuadPotentialDiag

littlemcmc.QuadPotentialDiag

	
class littlemcmc.QuadPotentialDiag(v, dtype=None)

	Quad potential using a diagonal covariance matrix.

	
__init__(v, dtype=None)

	Use a vector to represent a diagonal matrix for a covariance matrix.

	Parameters

	
	vvector, 0 <= ndim <= 1

	Diagonal of covariance matrix for the potential vector

Methods

	__init__(v[, dtype])

	Use a vector to represent a diagonal matrix for a covariance matrix.

	energy(x[, velocity])

	Compute kinetic energy at a position in parameter space.

	raise_ok([vmap])

	Check if the mass matrix is ok, and raise ValueError if not.

	random()

	Draw random value from QuadPotential.

	reset()

	Reset quadpotential adaptation routine.

	update(sample, grad, tune)

	Inform the potential about a new sample during tuning.

	velocity(x[, out])

	Compute the current velocity at a position in parameter space.

	velocity_energy(x, v_out)

	Compute velocity and return kinetic energy at a position in parameter space.

 littlemcmc.QuadPotentialFull

littlemcmc.QuadPotentialFull

	
class littlemcmc.QuadPotentialFull(cov, dtype=None)

	Basic QuadPotential object for Hamiltonian calculations.

	
__init__(cov, dtype=None)

	Compute the lower cholesky decomposition of the potential.

	Parameters

	
	Amatrix, ndim = 2

	scaling matrix for the potential vector

Methods

	__init__(cov[, dtype])

	Compute the lower cholesky decomposition of the potential.

	energy(x[, velocity])

	Compute kinetic energy at a position in parameter space.

	raise_ok([vmap])

	Check if the mass matrix is ok, and raise ValueError if not.

	random()

	Draw random value from QuadPotential.

	reset()

	Reset quadpotential adaptation routine.

	update(sample, grad, tune)

	Inform the potential about a new sample during tuning.

	velocity(x[, out])

	Compute the current velocity at a position in parameter space.

	velocity_energy(x, v_out)

	Compute velocity and return kinetic energy at a position in parameter space.

 littlemcmc.QuadPotentialFullInv

littlemcmc.QuadPotentialFullInv

	
class littlemcmc.QuadPotentialFullInv(A, dtype=None)

	QuadPotential object for Hamiltonian calculations using inverse of covariance matrix.

	
__init__(A, dtype=None)

	Compute the lower cholesky decomposition of the potential.

	Parameters

	
	Amatrix, ndim = 2

	Inverse of covariance matrix for the potential vector

Methods

	__init__(A[, dtype])

	Compute the lower cholesky decomposition of the potential.

	energy(x[, velocity])

	Compute kinetic energy at a position in parameter space.

	raise_ok([vmap])

	Check if the mass matrix is ok, and raise ValueError if not.

	random()

	Draw random value from QuadPotential.

	reset()

	Reset quadpotential adaptation routine.

	update(sample, grad, tune)

	Inform the potential about a new sample during tuning.

	velocity(x[, out])

	Compute the current velocity at a position in parameter space.

	velocity_energy(x, v_out)

	Compute velocity and return kinetic energy at a position in parameter space.

 littlemcmc.QuadPotentialDiagAdapt

littlemcmc.QuadPotentialDiagAdapt

	
class littlemcmc.QuadPotentialDiagAdapt(n, initial_mean, initial_diag=None, initial_weight=0, adaptation_window=101, adaptation_window_multiplier=1, dtype=None)

	Adapt a diagonal mass matrix from the sample variances.

	
__init__(n, initial_mean, initial_diag=None, initial_weight=0, adaptation_window=101, adaptation_window_multiplier=1, dtype=None)

	Set up a diagonal mass matrix.

Methods

	__init__(n, initial_mean[, initial_diag, …])

	Set up a diagonal mass matrix.

	energy(x[, velocity])

	Compute kinetic energy at a position in parameter space.

	raise_ok(vmap)

	Check if the mass matrix is ok, and raise ValueError if not.

	random()

	Draw random value from QuadPotential.

	reset()

	Reset quadpotential adaptation routine.

	update(sample, grad, tune)

	Inform the potential about a new sample during tuning.

	velocity(x[, out])

	Compute the current velocity at a position in parameter space.

	velocity_energy(x, v_out)

	Compute velocity and return kinetic energy at a position in parameter space.

 littlemcmc.QuadPotentialFullAdapt

littlemcmc.QuadPotentialFullAdapt

	
class littlemcmc.QuadPotentialFullAdapt(n, initial_mean, initial_cov=None, initial_weight=0, adaptation_window=101, adaptation_window_multiplier=2, update_window=1, dtype=None)

	Adapt a dense mass matrix using the sample covariances.

	
__init__(n, initial_mean, initial_cov=None, initial_weight=0, adaptation_window=101, adaptation_window_multiplier=2, update_window=1, dtype=None)

	Compute the lower cholesky decomposition of the potential.

	Parameters

	
	Amatrix, ndim = 2

	scaling matrix for the potential vector

Methods

	__init__(n, initial_mean[, initial_cov, …])

	Compute the lower cholesky decomposition of the potential.

	energy(x[, velocity])

	Compute kinetic energy at a position in parameter space.

	raise_ok(vmap)

	Check if the mass matrix is ok, and raise ValueError if not.

	random()

	Draw random value from QuadPotential.

	reset()

	Reset quadpotential adaptation routine.

	update(sample, grad, tune)

	Inform the potential about a new sample during tuning.

	velocity(x[, out])

	Compute the current velocity at a position in parameter space.

	velocity_energy(x, v_out)

	Compute velocity and return kinetic energy at a position in parameter space.

 littlemcmc.step_sizes.DualAverageAdaptation

littlemcmc.step_sizes.DualAverageAdaptation

	
class littlemcmc.step_sizes.DualAverageAdaptation(initial_step, target, gamma, k, t0)

	Dual averaging step size adaptation.

	
__init__(initial_step, target, gamma, k, t0)

	Class for dual averaging step size adaptation.

	Parameters

	
	initial_step

	

	target

	

	gammafloat, default .05

	

	kfloat, default .75

	Parameter for dual averaging for step size adaptation. Values
between 0.5 and 1 (exclusive) are admissible. Higher values
correspond to slower adaptation.

	t0int, default 10

	Parameter for dual averaging. Higher values slow initial
adaptation.

Methods

	__init__(initial_step, target, gamma, k, t0)

	Class for dual averaging step size adaptation.

	current(tune)

	Get current step size.

	reset()

	Reset step size adaptation routine.

	stats()

	Get step size adaptation statistics.

	update(accept_stat, tune)

	Update step size.

	warnings()

	Generate warnings from dual averaging step size adaptation.

 littlemcmc.integration.CpuLeapfrogIntegrator

littlemcmc.integration.CpuLeapfrogIntegrator

	
class littlemcmc.integration.CpuLeapfrogIntegrator(potential: littlemcmc.quadpotential.QuadPotential, logp_dlogp_func: Callable[[numpy.ndarray], Tuple[numpy.ndarray, numpy.ndarray]])

	Leapfrog integrator using the CPU.

	
__init__(potential: littlemcmc.quadpotential.QuadPotential, logp_dlogp_func: Callable[[numpy.ndarray], Tuple[numpy.ndarray, numpy.ndarray]]) → None

	Instantiate a CPU leapfrog integrator.

	Parameters

	
	potential

	

	logp_dlogp_func

	

Methods

	__init__(potential, logp_dlogp_func, …)

	Instantiate a CPU leapfrog integrator.

	compute_state(q, p)

	Compute Hamiltonian functions using a position and momentum.

	step(epsilon, state[, out])

	Leapfrog integrator step.

 About LittleMCMC

About LittleMCMC

LittleMCMC is a lightweight, performant implementation of Hamiltonian Monte
Carlo (HMC) and the No-U-Turn Sampler (NUTS) in Python. This document aims to
explain and contextualize the motivation and purpose of LittleMCMC. For an
introduction to the user-facing API, refer to the quickstart tutorial [https://littlemcmc.readthedocs.io/en/latest/tutorials/quickstart.html].

Motivation and Purpose

Bayesian inference and probabilistic computation is complicated and has many moving
parts[1]_. As a result, many probabilistic programming frameworks (or any library that
automates Bayesian inference) are monolithic libraries that handle everything from model
specification (including automatic differentiation of the joint log probability), to
inference (usually via Markov chain Monte Carlo or variational inference), to diagnosis
and visualization of the inference results[2]_. PyMC3 and Stan are two excellent
examples of such monolithic frameworks.

However, such monoliths require users to buy in to entire frameworks or ecosystems. For
example, a user that has specified their model in one framework but who now wishes to
migrate to another library (to take advantage of certain better-supported features, say)
must now reimplement their models from scratch in the new framework.

LittleMCMC remedies this exact use case: by isolating PyMC’s HMC/NUTS code in a
standalone library, users with their own log probability function and its derivative may
use PyMC’s battle-tested HMC/NUTS samplers.

LittleMCMC in Context

LittleMCMC stands on the shoulders of giants (that is, giant open source projects). Most
obviously, LittleMCMC builds from (or, more accurately, is a spin-off project from) the
PyMC project (both PyMC3 and PyMC4).

In terms of prior art, LittleMCMC is similar to several other open-source libraries,
such as NUTS by Morgan Fouesneau [https://github.com/mfouesneau/NUTS/] or Sampyl by
Mat Leonard [https://github.com/mcleonard/sampyl/]. However, these libraries do not
offer the same functionality as LittleMCMC: for example, they do not allow for easy
changes of the mass matrix (instead assuming that an identity mass matrix), or they do
not raise sampler errors or track sampler statistics such as divergences, energy, etc.

By offering step methods, integrators, quadpotentials and the sampling loop in separate
Python modules, LittleMCMC offers not just a battle-tested sampler, but also an
extensible one: users may configure the samplers as they wish.

 Python Module Index

 Python Module Index

 l

 		 	

 		
 l	

 	
 	
 littlemcmc	

 Index

Index

 _
 | C
 | D
 | H
 | L
 | N
 | Q
 | S

_

 	
 	__init__() (littlemcmc.HamiltonianMC method)

 	(littlemcmc.NUTS method)

 	(littlemcmc.QuadPotentialDiag method)

 	(littlemcmc.QuadPotentialDiagAdapt method)

 	(littlemcmc.QuadPotentialFull method)

 	(littlemcmc.QuadPotentialFullAdapt method)

 	(littlemcmc.QuadPotentialFullInv method)

 	(littlemcmc.integration.CpuLeapfrogIntegrator method)

 	(littlemcmc.step_sizes.DualAverageAdaptation method)

C

 	
 	CpuLeapfrogIntegrator (class in littlemcmc.integration)

D

 	
 	DualAverageAdaptation (class in littlemcmc.step_sizes)

H

 	
 	HamiltonianMC (class in littlemcmc)

L

 	
 	littlemcmc (module), [1]

N

 	
 	NUTS (class in littlemcmc)

Q

 	
 	quad_potential() (in module littlemcmc)

 	QuadPotentialDiag (class in littlemcmc)

 	QuadPotentialDiagAdapt (class in littlemcmc)

 	
 	QuadPotentialFull (class in littlemcmc)

 	QuadPotentialFullAdapt (class in littlemcmc)

 	QuadPotentialFullInv (class in littlemcmc)

S

 	
 	sample() (in module littlemcmc)

_static/ajax-loader.gif

_images/framework_cookbook_18_0.png
048

050

051

050

YD) Y

047

20

00

&0

a0

0850

0825

0800

0775

077 o7

079

030

081 om

083 o084

085

20

00

&0

a0

0130

0135

0140

~0l42

~0140

ol

0l 0134

ol

0130

20

400

&0

B0

_images/framework_cookbook_3_0.png
« abservations.
— ground truth

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 LittleMCMC

 		
 Installation

 		
 Using pip

 		
 From Source

 		
 Testing

 		
 LittleMCMC Quickstart

 		
 Table of Contents

 		
 Who should use LittleMCMC?

 		
 How to Sample

 		
 Inspecting the Output of lmc.sample

 		
 Customizing the Default NUTS Sampler

 		
 Other Modules

 		
 Framework Cookbook

 		
 Create and Visualize Data

 		
 PyTorch

 		
 JAX

 		
 PyMC3

 		
 Visualize Traces with ArviZ

 		
 API Reference

 		
 Sampling

 		
 littlemcmc.sample

 		
 Step Methods

 		
 littlemcmc.HamiltonianMC

 		
 littlemcmc.NUTS

 		
 Quadpotentials (a.k.a. Mass Matrices)

 		
 littlemcmc.quad_potential

 		
 littlemcmc.QuadPotentialDiag

 		
 littlemcmc.QuadPotentialFull

 		
 littlemcmc.QuadPotentialFullInv

 		
 littlemcmc.QuadPotentialDiagAdapt

 		
 littlemcmc.QuadPotentialFullAdapt

 		
 Dual Averaging Step Size Adaptation

 		
 littlemcmc.step_sizes.DualAverageAdaptation

 		
 Integrators

 		
 littlemcmc.integration.CpuLeapfrogIntegrator

 		
 About LittleMCMC

 		
 Motivation and Purpose

 		
 LittleMCMC in Context

_static/plus.png

_static/file.png

_static/minus.png

_static/logo/cover.png
| LittleMCMC

_static/logo/default-cropped.png
.| LittleMCMC

_static/up-pressed.png

_static/up.png

_static/logo